If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-4t+1=0
a = 1; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{3}}{2*1}=\frac{4-2\sqrt{3}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{3}}{2*1}=\frac{4+2\sqrt{3}}{2} $
| 9-4(2v+4)=170 | | -7+6(1-3p)=25+8p | | 2(p+5)=12 | | 3x(x-3)=(7x^2-10x) | | 7-6(1-3a)=33+2a | | 3p+14=17 | | y-(4/3y)=-1/3 | | 4n+2=6(1.3n-2.3) | | u13+2=7 | | 24x+3=129 | | 0.625x+3=8 | | 3y=-43/7 | | 7-6(1-3p)=25+8p | | 2s+13=17 | | 10x/30+12/30=15x/30 | | 2(2x+4)+2(x)=86 | | 100+x^2=144 | | 6(k+2)=+1=13 | | 13c+4=17 | | -6-7m=-6(1+8m) | | x+6.1/2=3.4 | | -4(2-8b)=-8+4b | | 11y+8=19 | | 5+2w=70 | | 11-3n=-2(1+8n) | | 5+2w=60 | | 8x×1=-71 | | 2(x+30+2x=42 | | 5n+30=5(1+6n) | | 0.2(10-5c)=-16 | | 9(7v+4)=31 | | 2^2x=2^3 |